Search results
Results from the WOW.Com Content Network
Eukaryotic flagella are ATP-driven, while prokaryotic flagella can be ATP-driven (Archaea) or proton-driven (Bacteria). [11] The three types of flagella are bacterial, archaeal, and eukaryotic. The flagella in eukaryotes have dynein and microtubules that move with a bending mechanism. Bacteria and archaea do not have dynein or microtubules in ...
The evolution of flagella is of great interest to biologists because the three known varieties of flagella – (eukaryotic, bacterial, and archaeal) each represent a sophisticated cellular structure that requires the interaction of many different systems.
Eukaryotic flagella are complex cellular projections that lash back and forth, rather than in a circular motion. Prokaryotic flagella use a rotary motor, and the eukaryotic flagella use a complex sliding filament system. Eukaryotic flagella are ATP-driven, while prokaryotic flagella can be ATP-driven (archaea) or proton-driven (bacteria). [22]
Flagella in eukaryotes are supported by microtubules in a characteristic arrangement, with nine fused pairs surrounding two central singlets. These arise from a basal body. In some flagellates, flagella direct food into a cytostome or mouth, where food is ingested. Flagella role in classifying eukaryotes.
Eukaryotic flagella are complex cellular projections that lash back and forth, rather than in a circular motion. Prokaryotic flagella use a rotary motor, and the eukaryotic flagella use a complex sliding filament system. Eukaryotic flagella are ATP-driven, while prokaryotic flagella can be ATP-driven (archaea) or proton-driven (bacteria). [124]
Eukaryotic flagella—those of animal, plant, and protist cells—are complex cellular projections that lash back and forth. Eukaryotic flagella are classed along with eukaryotic motile cilia as undulipodia [17] to emphasize their distinctive wavy appendage role in cellular function or motility. Primary cilia are immotile, and are not undulipodia.
The flagellum is a rotating structure driven by a reversible motor at the base that uses the electrochemical gradient across the membrane for power. [150] The different arrangements of bacterial flagella: A-Monotrichous; B-Lophotrichous; C-Amphitrichous; D-Peritrichous. Bacteria can use flagella in different ways to generate different kinds of ...
While prokaryotes do not possess eukaryotic organelles, some do contain protein-shelled bacterial microcompartments, which are thought to act as primitive prokaryotic organelles; [1] and there is also evidence of other membrane-bounded structures. [2]