enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    The shapes of atomic orbitals in one-electron atom are related to 3-dimensional spherical harmonics. These shapes are not unique, and any linear combination is valid, like a transformation to cubic harmonics, in fact it is possible to generate sets where all the d's are the same shape, just like the p x, p y, and p z are the same shape. [33] [34]

  3. Relativistic quantum chemistry - Wikipedia

    en.wikipedia.org/wiki/Relativistic_quantum_chemistry

    Bohr calculated that a 1s orbital electron of a hydrogen atom orbiting at the Bohr radius of 0.0529 nm travels at nearly 1/137 the speed of light. [11] One can extend this to a larger element with an atomic number Z by using the expression v ≈ Z c 137 {\displaystyle v\approx {\frac {Zc}{137}}} for a 1s electron, where v is its radial velocity ...

  4. Drift velocity - Wikipedia

    en.wikipedia.org/wiki/Drift_velocity

    Copper has one free electron per atom, so n is equal to 8.5 × 10 28 electrons per cubic metre. Assume a current I = 1 ampere, and a wire of 2 mm diameter (radius = 0.001 m). This wire has a cross sectional area A of π × (0.001 m) 2 = 3.14 × 10 −6 m 2 = 3.14 mm 2. The elementary charge of an electron is e = −1.6 × 10 −19 C.

  5. Electron - Wikipedia

    en.wikipedia.org/wiki/Electron

    The speed of an electron can approach, but never reach, the speed of light in vacuum, c. However, when relativistic electrons—that is, electrons moving at a speed close to c —are injected into a dielectric medium such as water, where the local speed of light is significantly less than c , the electrons temporarily travel faster than light ...

  6. Speed of electricity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_electricity

    In general, an electron will propagate randomly in a conductor at the Fermi velocity. [5] Free electrons in a conductor follow a random path. Without the presence of an electric field, the electrons have no net velocity. When a DC voltage is applied, the electron drift velocity will increase in speed proportionally to the strength of the ...

  7. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    The electron mobility is defined by the equation: =. where: E is the magnitude of the electric field applied to a material, v d is the magnitude of the electron drift velocity (in other words, the electron drift speed) caused by the electric field, and; μ e is the electron mobility.

  8. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. [1] For example, the electron configuration of the neon atom is 1s 2 2s 2 2p 6 , meaning that the 1s, 2s, and 2p subshells are occupied by two, two, and six ...

  9. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    When the electron is bound to the atom in any closer value of n, the electron's energy is lower and is considered negative. Orbital state energy level: atom/ion with nucleus + one electron [ edit ]