enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourier-transform infrared spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Fourier-transform_infrared...

    Fourier-transform infrared spectroscopy (FTIR) [1] is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectral range. This confers a significant advantage over a dispersive spectrometer, which measures ...

  3. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    In physics, engineering and mathematics, the Fourier transform (FT) is an integral transform that takes a function as input and outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex -valued function of frequency.

  4. Fourier-transform spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Fourier-transform_spectroscopy

    Fourier-transform spectroscopy. Fourier-transform spectroscopy is a measurement technique whereby spectra are collected based on measurements of the coherence of a radiative source, using time-domain or space-domain measurements of the radiation, electromagnetic or not. It can be applied to a variety of types of spectroscopy including optical ...

  5. Multidimensional transform - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_transform

    The multidimensional Laplace transform is useful for the solution of boundary value problems. Boundary value problems in two or more variables characterized by partial differential equations can be solved by a direct use of the Laplace transform. [3] The Laplace transform for an M-dimensional case is defined [3] as.

  6. Fast Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fast_Fourier_transform

    A fast Fourier transform (FFT) is an algorithm that computes the Discrete Fourier Transform (DFT) of a sequence, or its inverse (IDFT). Fourier analysis converts a signal from its original domain (often time or space) to a representation in the frequency domain and vice versa. The DFT is obtained by decomposing a sequence of values into ...

  7. Fourier optics - Wikipedia

    en.wikipedia.org/wiki/Fourier_optics

    Fourier optics begins with the homogeneous, scalar wave equation (valid in source-free regions): (,) = where is the speed of light and u(r,t) is a real-valued Cartesian component of an electromagnetic wave propagating through a free space (e.g., u(r, t) = E i (r, t) for i = x, y, or z where E i is the i-axis component of an electric field E in the Cartesian coordinate system).

  8. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    Fourier transforms. In mathematics, Fourier analysis (/ ˈfʊrieɪ, - iər /) [1] is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of ...

  9. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/.../Discrete-time_Fourier_transform

    In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of discrete values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time.