Search results
Results from the WOW.Com Content Network
where resistance in ohms and capacitance in farads yields the time constant in seconds or the cutoff frequency in hertz (Hz). The cutoff frequency when expressed as an angular frequency ( ω c = 2 π f c ) {\displaystyle (\omega _{c}{=}2\pi f_{c})} is simply the reciprocal of the time constant.
The equation is a good approximation if d is small compared to the other dimensions of the plates so that the electric field in the capacitor area is uniform, and the so-called fringing field around the periphery provides only a small contribution to the capacitance. Combining the equation for capacitance with the above equation for the energy ...
This is in contrast to R m (in Ω·m 2) and C m (in F/m 2), which represent the specific resistance and capacitance respectively of one unit area of membrane (in m 2). Thus, if the radius, a , of the axon is known, [ b ] then its circumference is 2 πa , and its r m , and its c m values can be calculated as:
The equations themselves consist of a pair of coupled, first-order, partial differential equations. The first equation shows that the induced voltage is related to the time rate-of-change of the current through the cable inductance, while the second shows, similarly, that the current drawn by the cable capacitance is related to the time rate-of ...
As a result, device admittance is frequency-dependent, and the simple electrostatic formula for capacitance, = , is not applicable. A more general definition of capacitance, encompassing electrostatic formula, is: [6]
The formula for capacitance in a parallel plate capacitor is written as C = ε A d {\displaystyle C=\varepsilon \ {\frac {A}{d}}} where A {\displaystyle A} is the area of one plate, d {\displaystyle d} is the distance between the plates, and ε {\displaystyle \varepsilon } is the permittivity of the medium between the two plates.
Electromagnetic behavior is governed by Maxwell's equations, and all parasitic extraction requires solving some form of Maxwell's equations. That form may be a simple analytic parallel plate capacitance equation or may involve a full numerical solution for a complex 3D geometry with wave propagation.
where L, R and C represent inductance, resistance, and capacitance respectively and s is the complex frequency operator = +. This is the conventional way of representing a general impedance but for the purposes of this article it is mathematically more convenient to deal with elastance , D , the inverse of capacitance, C .