Search results
Results from the WOW.Com Content Network
Some mass spectrometrists use the definition that is similar to definitions used in some other fields of physics and chemistry. In this case, resolving power is defined as: R = M Δ M = r e s o l v i n g p o w e r {\displaystyle R={\cfrac {M}{\Delta M}}=\mathrm {resolving\ power} }
The monoisotopic mass is the sum of the masses of the atoms in a molecule using the unbound, ground-state, rest mass of the principal (most abundant) isotope for each element. [12] [5] The monoisotopic mass of a molecule or ion is the exact mass obtained using the principal isotopes. Monoisotopic mass is typically expressed in daltons.
Nominal mass is a term used in high level mass spectrometric discussions, it can be calculated using the mass number of the most abundant isotope of each atom, without regard for the mass defect. For example, when calculating the nominal mass of a molecule of nitrogen (N 2) and ethylene (C 2 H 4) it comes out as. N 2 (2*14)= 28 Da C 2 H 4
Stoichiometry is founded on the law of conservation of mass where the total mass of the reactants equals the total mass of the products, leading to the insight that the relations between quantities of reactants and products typically form a ratio of positive integers. This means that if the amounts of the separate reactants are known, then the ...
Thus, the atomic mass of a carbon-12 atom is 12 Da by definition, but the relative isotopic mass of a carbon-12 atom is simply 12. The sum of relative isotopic masses of all atoms in a molecule is the relative molecular mass. The atomic mass of an isotope and the relative isotopic mass refers to a certain specific isotope of an element.
A mass spectrum is a histogram plot of intensity vs. mass-to-charge ratio (m/z) in a chemical sample, [1] usually acquired using an instrument called a mass spectrometer. Not all mass spectra of a given substance are the same; for example, some mass spectrometers break the analyte molecules into fragments ; others observe the intact molecular ...
Specific activity (symbol a) is the activity per unit mass of a radionuclide and is a physical property of that radionuclide. [1] [2] It is usually given in units of becquerel per kilogram (Bq/kg), but another commonly used unit of specific activity is the curie per gram (Ci/g).
Mathematically, mass flux is defined as the limit =, where = = is the mass current (flow of mass m per unit time t) and A is the area through which the mass flows.. For mass flux as a vector j m, the surface integral of it over a surface S, followed by an integral over the time duration t 1 to t 2, gives the total amount of mass flowing through the surface in that time (t 2 − t 1): = ^.