Search results
Results from the WOW.Com Content Network
where is the molar concentration, and is the molar mass of the component . Mass percentage Mass percentage is defined as the mass fraction multiplied by 100. Mole ...
In chemistry, the molar mass (M) (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of the compound. [1] The molar mass is a bulk, not molecular, property of a substance.
Whereas mole fraction is a ratio of amounts to amounts (in units of moles per moles), molar concentration is a quotient of amount to volume (in units of moles per litre). Other ways of expressing the composition of a mixture as a dimensionless quantity are mass fraction and volume fraction .
The number average molar mass is a way of determining the molecular mass of a polymer.Polymer molecules, even ones of the same type, come in different sizes (chain lengths, for linear polymers), so the average molecular mass will depend on the method of averaging.
It is also equal to the molar mass (M) divided by the mass density (ρ): = = The molar volume has the SI unit of cubic metres per mole (m 3 /mol), [ 1 ] although it is more typical to use the units cubic decimetres per mole (dm 3 /mol) for gases , and cubic centimetres per mole (cm 3 /mol) for liquids and solids .
In chemistry, the lever rule is a formula used to determine the mole fraction (x i) or the mass fraction (w i) of each phase of a binary equilibrium phase diagram.It can be used to determine the fraction of liquid and solid phases for a given binary composition and temperature that is between the liquidus and solidus line.
Historically, the mole was defined as the amount of substance in 12 grams of the carbon-12 isotope.As a consequence, the mass of one mole of a chemical compound, in grams, is numerically equal (for all practical purposes) to the mass of one molecule or formula unit of the compound, in daltons, and the molar mass of an isotope in grams per mole is approximately equal to the mass number ...
The equivalent weight of an element is the mass which combines with or displaces 1.008 gram of hydrogen or 8.0 grams of oxygen or 35.5 grams of chlorine. The corresponding unit of measurement is sometimes expressed as "gram equivalent". [1] The equivalent weight of an element is the mass of a mole of the element divided by the element's valence.