Search results
Results from the WOW.Com Content Network
Taking a concave-up example, the left tangent prediction line underestimates the slope of the curve for the entire width of the interval from the current point to the next predicted point. If the tangent line at the right end point is considered (which can be estimated using Euler's Method), it has the opposite problem. [3]
The point-slope form of an equation forms an equation of a line, given a point (,) and slope . The general form of this equation is: y − K = M ( x − H ) {\displaystyle y-K=M(x-H)} . Using the point ( a , f ( a ) ) {\displaystyle (a,f(a))} , L a ( x ) {\displaystyle L_{a}(x)} becomes y = f ( a ) + M ( x − a ) {\displaystyle y=f(a)+M(x-a)} .
Solutions to a slope field are functions drawn as solid curves. A slope field shows the slope of a differential equation at certain vertical and horizontal intervals on the x-y plane, and can be used to determine the approximate tangent slope at a point on a curve, where the curve is some solution to the differential equation.
As h approaches zero, the slope of the secant line approaches the slope of the tangent line. Therefore, the true derivative of f at x is the limit of the value of the difference quotient as the secant lines get closer and closer to being a tangent line: ′ = (+) ().
As the point q approaches p, which corresponds to making h smaller and smaller, the difference quotient should approach a certain limiting value k, which is the slope of the tangent line at the point p. If k is known, the equation of the tangent line can be found in the point-slope form: = ().
It has also been called Sen's slope estimator, [1] [2] slope selection, [3] [4] the single median method, [5] the Kendall robust line-fit method, [6] and the Kendall–Theil robust line. [7] It is named after Henri Theil and Pranab K. Sen , who published papers on this method in 1950 and 1968 respectively, [ 8 ] and after Maurice Kendall ...
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
It follows that at least one tangent line to γ must pass through any given point in the plane. If y > x 3 and y > 0 then each point (x,y) has exactly one tangent line to γ passing through it. The same is true if y < x 3 y < 0. If y < x 3 and y > 0 then each point (x,y) has exactly three distinct