enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. X-linked dominant inheritance - Wikipedia

    en.wikipedia.org/wiki/X-linked_dominant_inheritance

    X-linked dominant traits do not necessarily affect males more than females (unlike X-linked recessive traits). The exact pattern of inheritance varies, depending on whether the father or the mother has the trait of interest. All fathers that are affected by an X-linked dominant disorder will have affected daughters but not affected sons.

  3. Mendelian traits in humans - Wikipedia

    en.wikipedia.org/wiki/Mendelian_traits_in_humans

    Autosomal dominant A 50/50 chance of inheritance. Sickle-cell disease is inherited in the autosomal recessive pattern. When both parents have sickle-cell trait (carrier), a child has a 25% chance of sickle-cell disease (red icon), 25% do not carry any sickle-cell alleles (blue icon), and 50% have the heterozygous (carrier) condition. [1]

  4. Human genetics - Wikipedia

    en.wikipedia.org/wiki/Human_genetics

    X-linked dominant inheritance will show the same phenotype as a heterozygote and homozygote. Just like X-linked inheritance, there will be a lack of male-to-male inheritance, which makes it distinguishable from autosomal traits. One example of an X-linked trait is Coffin–Lowry syndrome, which is caused by a mutation in ribosomal protein gene ...

  5. Dominance (genetics) - Wikipedia

    en.wikipedia.org/wiki/Dominance_(genetics)

    Autosomal dominant and autosomal recessive inheritance, the two most common Mendelian inheritance patterns. An autosome is any chromosome other than a sex chromosome.. In genetics, dominance is the phenomenon of one variant of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome.

  6. Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Mendelian_inheritance

    In a dominant-recessive inheritance, an average of 25% are homozygous with the dominant trait, 50% are heterozygous showing the dominant trait in the phenotype (genetic carriers), 25% are homozygous with the recessive trait and therefore express the recessive trait in the phenotype. The genotypic ratio is 1: 2 : 1, and the phenotypic ratio is 3: 1.

  7. Simple Mendelian genetics in humans - Wikipedia

    en.wikipedia.org/wiki/Simple_Mendelian_genetics...

    Mendelian traits behave according to the model of monogenic or simple gene inheritance in which one gene corresponds to one trait. Discrete traits (as opposed to continuously varying traits such as height) with simple Mendelian inheritance patterns are relatively rare in nature, and many of the clearest examples in humans cause disorders.

  8. X-linked genetic disease - Wikipedia

    en.wikipedia.org/wiki/X-linked_genetic_disease

    For a dominant trait to be displayed, an individual only requires one dominant allele, whereas expressing a recessive trait requires the possession of two recessive alleles at the same time. X-linked genetic disorders can arise when there is a spontaneous and permanent change in the DNA sequence of an X-linked gene, known as mutation .

  9. Sex linkage - Wikipedia

    en.wikipedia.org/wiki/Sex_linkage

    Sex-influenced or sex-conditioned traits are phenotypes affected by whether they appear in a male or female body. [6] Even in a homozygous dominant or recessive female the condition may not be expressed fully. Example: baldness in humans.