Search results
Results from the WOW.Com Content Network
The steeper the bank, the greater the g-forces. This top-fuel dragster can accelerate from zero to 160 kilometres per hour (99 mph) in 0.86 seconds. This is a horizontal acceleration of 5.3 g. Combining this with the vertical g-force in the stationary case using the Pythagorean theorem yields a g-force of 5.4 g.
milligrave-force, gravet-force: mgvf; gvtf ≡ g 0 × 1 g = 9.806 65 mN: long ton-force: tnf [citation needed] ≡ g 0 × 1 long ton = 9.964 016 418 183 52 × 10 3 N: newton (SI unit) N A force capable of giving a mass of one kilogram an acceleration of one metre per second per second. [32] = 1 N = 1 kg⋅m/s 2: ounce-force: ozf ≡ g 0 × 1 oz ...
Shock describes matter subject to extreme rates of force with respect to time. Shock is a vector that has units of an acceleration (rate of change of velocity). The unit g (or g) represents multiples of the standard acceleration of gravity and is conventionally used.
For example, 50 g of zinc will react with oxygen to produce 62.24 g of zinc oxide, implying that the zinc has reacted with 12.24 g of oxygen (from the Law of conservation of mass): the equivalent weight of zinc is the mass which will react with eight grams of oxygen, hence 50 g × 8 g/12.24 g = 32.7 g.
In unit systems where force is a primary unit, like in imperial and US customary measurement systems, g c may or may not equal 1 depending on the units used, and value other than 1 may be required to obtain correct results. [2] For example, in the kinetic energy (KE) formula, if g c = 1 is used, then KE is expressed in foot-poundals; but if g c ...
5 MPa 700 psi Water pressure of the output of a coin-operated car wash spray nozzle [58] 5 MPa 700 psi Military submarine max. rated pressure (est.) of Seawolf-class nuclear submarine, at depth of 500 m [65] [66] 10-21 MPa 1,500–3,000 psi Chamber pressure of a high-powered (non-carbon dioxide) air gun 6.9–27 MPa 1,000–4,000 psi
In fluid mechanics, the pressure-gradient force is the force that results when there is a difference in pressure across a surface. In general, a pressure is a force per unit area across a surface. A difference in pressure across a surface then implies a difference in force, which can result in an acceleration according to Newton's second law of ...
The weight of the object in the fluid is reduced, because of the force acting on it, which is called upthrust. In simple terms, the principle states that the buoyant force (F b) on an object is equal to the weight of the fluid displaced by the object, or the density of the fluid multiplied by the submerged volume (V) times the gravity (g) [1] [3]