Search results
Results from the WOW.Com Content Network
To show that a system S is required to prove a theorem T, two proofs are required. The first proof shows T is provable from S; this is an ordinary mathematical proof along with a justification that it can be carried out in the system S. The second proof, known as a reversal, shows that T itself implies S; this proof is carried out in the base ...
In logic, more specifically proof theory, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style system, Hilbert-style proof system, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of formal proof system attributed to Gottlob Frege [1] and David Hilbert. [2]
In logic and mathematics, a formal proof or derivation is a finite sequence of sentences (known as well-formed formulas when relating to formal language), each of which is an axiom, an assumption, or follows from the preceding sentences in the sequence, according to the rule of inference.
A proof system includes the components: [1] [2] Formal language: The set L of formulas admitted by the system, for example, propositional logic or first-order logic. Rules of inference: List of rules that can be employed to prove theorems from axioms and theorems. Axioms: Formulas in L assumed to be valid. All theorems are derived from axioms.
Predicate logic. First-order logic. Infinitary logic; Many-sorted logic; Higher-order logic. Lindström quantifier; Second-order logic; Soundness theorem; Gödel's completeness theorem. Original proof of Gödel's completeness theorem; Compactness theorem; Löwenheim–Skolem theorem. Skolem's paradox; Gödel's incompleteness theorems; Structure ...
Every logic system requires at least one non-nullary rule of inference. Classical propositional calculus typically uses the rule of modus ponens: ,. We assume this rule is included in all systems below unless stated otherwise. Frege's axiom system: [1] ()
A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]
When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises that leads to a conclusion.