Search results
Results from the WOW.Com Content Network
The top plot shows the individual three phase signals, the middle plot shows the half-wave rectifier output in solid curve and the bottom plot shows the full-wave rectifier output in solid curve. The 'T' in time is the time period of individual signals and V p e a k {\displaystyle \scriptstyle V_{\mathrm {peak} }} is the amplitude of each of ...
While half-wave and full-wave rectification deliver unidirectional current, neither produces a constant voltage. There is a large AC ripple voltage component at the source frequency for a half-wave rectifier, and twice the source frequency for a full-wave rectifier. Ripple voltage is usually specified peak-to-peak.
Pulsed DC is commonly produced from AC (alternating current) by a half-wave rectifier or a full-wave rectifier. Full wave rectified ac is more commonly known as Rectified AC. PDC has some characteristics of both alternating current (AC) and direct current (DC) waveforms. The voltage of a DC wave is roughly constant, whereas the voltage of an AC ...
The characteristics and components of ripple depend on its source: there is single-phase half- and full-wave rectification, and three-phase half- and full-wave rectification. Rectification can be controlled (uses Silicon Controlled Rectifiers (SCRs)) or uncontrolled (uses diodes). There is in addition, active rectification which uses transistors.
Active full-wave rectification with two MOSFETs and a center tap transformer. Replacing a diode with an actively controlled switching element such as a MOSFET is the heart of active rectification. MOSFETs have a constant very low resistance when conducting, known as on-resistance (R DS(on)). They can be made with an on-resistance as low as 10 ...
When the AC voltage is applied, the rectified line voltage is applied across C1 and C2, as they are both charged via D3 and R1, until C1 and C2 are each charged up to approximately half of the peak line voltage. When the line voltage falls below the peak, into the "valley" phase, Vout begins to fall toward half of the peak line voltage.
Another example is the generation of higher-phase-order systems for large rectifier systems, to produce a smoother DC output and to reduce the harmonic currents in the supply. When three-phase is needed but only single-phase is readily available from the electricity supplier, a phase converter can be used to generate three-phase power from the ...
Voltage multipliers can be used to generate a few volts for electronic appliances, to millions of volts for purposes such as high-energy physics experiments and lightning safety testing. The most common type of voltage multiplier is the half-wave series multiplier, also called the Villard cascade (but actually invented by Heinrich Greinacher).