Search results
Results from the WOW.Com Content Network
Let R be the set of all sets that are not members of themselves. (This set is sometimes called "the Russell set".) If R is not a member of itself, then its definition entails that it is a member of itself; yet, if it is a member of itself, then it is not a member of itself, since it is the set of all sets that are not members of themselves. The ...
Russell's paradox concerns the impossibility of a set of sets, whose members are all sets that do not contain themselves. If such a set could exist, it could neither contain itself (because its members all do not contain themselves) nor avoid containing itself (because if it did, it should be included as one of its members). [2]
After all this, the version of the "set of all sets" paradox conceived by Bertrand Russell in 1903 led to a serious crisis in set theory. Russell recognized that the statement x = x is true for every set, and thus the set of all sets is defined by {x | x = x}. In 1906 he constructed several paradox sets, the most famous of which is the set of ...
A set of sentences is called a (first-order) theory, which takes the sentences in the set as its axioms. A theory is satisfiable if it has a model M ⊨ T {\displaystyle {\mathcal {M}}\models T} , i.e. a structure (of the appropriate signature) which satisfies all the sentences in the set T {\displaystyle T} .
The set of all provable sentences in an effective axiomatic system is always a recursively enumerable set.If the system is suitably complex, like first-order arithmetic, then the set T of Gödel numbers of true sentences in the system will be a productive set, which means that whenever W is a recursively enumerable set of true sentences, there is at least one true sentence that is not in W.
An operation in set theory that combines the elements of two or more sets to form a single set containing all the elements of the original sets, without duplication. universal universe 1. The universal class, or universe, is the class of all sets. A universal quantifier is the quantifier "for all", usually written ∀ unordered pair
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
Cantor's paradox is the name given to a contradiction following from Cantor's theorem together with the assumption that there is a set containing all sets, the universal set. In order to distinguish this paradox from the next one discussed below, it is important to note what this contradiction is.