enow.com Web Search

  1. Ad

    related to: joint probability questions and answers

Search results

  1. Results from the WOW.Com Content Network
  2. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    If the points in the joint probability distribution of X and Y that receive positive probability tend to fall along a line of positive (or negative) slope, ρ XY is near +1 (or −1). If ρ XY equals +1 or −1, it can be shown that the points in the joint probability distribution that receive positive probability fall exactly along a straight ...

  3. Copula (statistics) - Wikipedia

    en.wikipedia.org/wiki/Copula_(statistics)

    In probability theory and statistics, a copula is a multivariate cumulative distribution function for which the marginal probability distribution of each variable is uniform on the interval [0, 1]. Copulas are used to describe/model the dependence (inter-correlation) between random variables. [1]

  4. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.

  5. Exchangeable random variables - Wikipedia

    en.wikipedia.org/wiki/Exchangeable_random_variables

    Formally, an exchangeable sequence of random variables is a finite or infinite sequence X 1, X 2, X 3, ... of random variables such that for any finite permutation σ of the indices 1, 2, 3, ..., (the permutation acts on only finitely many indices, with the rest fixed), the joint probability distribution of the permuted sequence

  6. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    [I]n 1922, I proposed the term 'likelihood,' in view of the fact that, with respect to [the parameter], it is not a probability, and does not obey the laws of probability, while at the same time it bears to the problem of rational choice among the possible values of [the parameter] a relation similar to that which probability bears to the ...

  7. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    where is the Kullback–Leibler divergence, and is the outer product distribution which assigns probability () to each (,).. Notice, as per property of the Kullback–Leibler divergence, that (;) is equal to zero precisely when the joint distribution coincides with the product of the marginals, i.e. when and are independent (and hence observing tells you nothing about ).

  8. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    One can compute this directly, without using a probability distribution (distribution-free classifier); one can estimate the probability of a label given an observation, (| =) (discriminative model), and base classification on that; or one can estimate the joint distribution (,) (generative model), from that compute the conditional probability ...

  9. Conjunction fallacy - Wikipedia

    en.wikipedia.org/wiki/Conjunction_fallacy

    For example, even choosing a very low probability of Linda's being a bank teller, say Pr(Linda is a bank teller) = 0.05 and a high probability that she would be a feminist, say Pr(Linda is a feminist) = 0.95, then, assuming these two facts are independent of each other, Pr(Linda is a bank teller and Linda is a feminist) = 0.05 × 0.95 or 0.0475 ...

  1. Ad

    related to: joint probability questions and answers