Search results
Results from the WOW.Com Content Network
Potentiometry passively measures the potential of a solution between two electrodes, affecting the solution very little in the process. One electrode is called the reference electrode and has a constant potential, while the other one is an indicator electrode whose potential changes with the sample's composition. Therefore, the difference in ...
A metre bridge is a simple type of potentiometer which may be used in school science laboratories to demonstrate the principle of resistance measurement by potentiometric means. A resistance wire is laid along the length of a metre rule and contact with the wire is made through a galvanometer by a slider. When the galvanometer reads zero, the ...
Reference electrodes generally used are hydrogen electrodes, calomel electrodes, and silver chloride electrodes. The indicator electrode forms an electrochemical half-cell with the interested ions in the test solution. The reference electrode forms the other half-cell. The overall electric potential is calculated as
Voltammetry is the study of current as a function of applied potential. These curves I = f(E) are called voltammograms. The potential is varied arbitrarily, either step by step or continuously, and the resulting current value is measured as the dependent variable. The opposite, i.e., amperometry, is also possible but not common. The shape of ...
The connection can be direct, through a narrow tube to reduce mixing, or through a salt bridge, depending on the other electrode and solution. This creates an ionically conductive path to the working electrode of interest. A reference electrode is an electrode that has a stable and well-known electrode potential.
An ion-selective electrode (ISE), also known as a specific ion electrode (SIE), is a simple membrane-based potentiometric device which measures the activity of ions in solution. [1] It is a transducer (or sensor ) that converts the change in the concentration of a specific ion dissolved in a solution into an electrical potential .
The solvent, electrolyte, and material composition of the working electrode will determine the potential range that can be accessed during the experiment. The electrodes are immobile and sit in unstirred solutions during cyclic voltammetry. This "still" solution method gives rise to cyclic voltammetry's characteristic diffusion-controlled peaks.
The Gran plot is based on the Nernst equation which can be written as = + {+} where E is a measured electrode potential, E 0 is a standard electrode potential, s is the slope, ideally equal to RT/nF, and {H +} is the activity of the hydrogen ion.