enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    The Laplace transform can also be used to solve differential equations and is used extensively in mechanical engineering and electrical engineering. The Laplace transform reduces a linear differential equation to an algebraic equation, which can then be solved by the formal rules of algebra.

  3. Pierre-Simon Laplace - Wikipedia

    en.wikipedia.org/wiki/Pierre-Simon_Laplace

    Laplace formulated Laplace's equation, and pioneered the Laplace transform which appears in many branches of mathematical physics, a field that he took a leading role in forming. The Laplacian differential operator , widely used in mathematics, is also named after him.

  4. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t). The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0).

  5. Oliver Heaviside - Wikipedia

    en.wikipedia.org/wiki/Oliver_Heaviside

    Oliver Heaviside (/ ˈ h ɛ v i s aɪ d / HEAVY-side; 18 May 1850 – 3 February 1925) was an English mathematician and physicist who invented a new technique for solving differential equations (equivalent to the Laplace transform), independently developed vector calculus, and rewrote Maxwell's equations in the form commonly used today.

  6. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  7. List of transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_transforms

    Bateman transform; Fourier transform. Short-time Fourier transform; Gabor transform; Hankel transform; Hartley transform; Hermite transform; Hilbert transform. Hilbert–Schmidt integral operator; Jacobi transform; Laguerre transform; Laplace transform. Inverse Laplace transform; Two-sided Laplace transform; Inverse two-sided Laplace transform ...

  8. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    In physics, the Green's function (or fundamental solution) for the Laplacian (or Laplace operator) in three variables is used to describe the response of a particular type of physical system to a point source.

  9. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols ∇ ⋅ ∇ {\displaystyle \nabla \cdot \nabla } , ∇ 2 {\displaystyle \nabla ^{2}} (where ∇ {\displaystyle \nabla } is the nabla operator ), or Δ ...