enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Barlow's formula - Wikipedia

    en.wikipedia.org/wiki/Barlow's_formula

    : wall thickness, D {\displaystyle D} : outside diameter. This formula (DIN 2413) figures prominently in the design of autoclaves and other pressure vessels .

  3. Cylinder stress - Wikipedia

    en.wikipedia.org/wiki/Cylinder_stress

    For the thin-walled assumption to be valid, the vessel must have a wall thickness of no more than about one-tenth (often cited as Diameter / t > 20) of its radius. [4] This allows for treating the wall as a surface, and subsequently using the Young–Laplace equation for estimating the hoop stress created by an internal pressure on a thin-walled cylindrical pressure vessel:

  4. Maximum allowable operating pressure - Wikipedia

    en.wikipedia.org/wiki/Maximum_allowable...

    Maximum Allowable Operating Pressure (MAOP) is a pressure limit set, usually by a government body, which applies to compressed gas pressure vessels, pipelines, and storage tanks. For pipelines, this value is derived from Barlow's Formula , which takes into account wall thickness, diameter, allowable stress (which is a function of the material ...

  5. Pressure vessel - Wikipedia

    en.wikipedia.org/wiki/Pressure_vessel

    The ASME definition of a pressure vessel is a container designed to hold gases or liquids at a pressure substantially different from the ambient pressure. [2]The Australian and New Zealand standard "AS/NZS 1200:2000 Pressure equipment" defines a pressure vessel as a vessel subject to internal or external pressure, including connected components and accessories up to the connection to external ...

  6. Specified minimum yield strength - Wikipedia

    en.wikipedia.org/wiki/Specified_Minimum_Yield...

    The SMYS is required to determine the maximum allowable operating pressure (MAOP) of a pipeline, as determined by Barlow's Formula which is P = (2 * S * T)/(OD * SF), where P is pressure, OD is the pipe’s outside diameter, S is the SMYS, T is its wall thickness, and SF is a [Safety Factor].

  7. Radial stress - Wikipedia

    en.wikipedia.org/wiki/Radial_stress

    The walls of pressure vessels generally undergo triaxial loading. For cylindrical pressure vessels, the normal loads on a wall element are longitudinal stress, circumferential (hoop) stress and radial stress. The radial stress for a thick-walled cylinder is equal and opposite to the gauge pressure on the inside surface, and zero on the outside ...

  8. Souders–Brown equation - Wikipedia

    en.wikipedia.org/wiki/Souders–Brown_equation

    Use a vertical pressure vessel with a length–diameter ratio of about 3 to 4, and size the vessel to provide about ... (materials of construction, wall thickness ...

  9. Young–Laplace equation - Wikipedia

    en.wikipedia.org/wiki/Young–Laplace_equation

    In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.