Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
As its name implies, the moment-generating function can be used to compute a distribution’s moments: the nth moment about 0 is the nth derivative of the moment-generating function, evaluated at 0. In addition to real-valued distributions (univariate distributions), moment-generating functions can be defined for vector- or matrix-valued random ...
The q-deformed exponential and logarithmic functions were first introduced in Tsallis statistics in 1994. [1] However, the q -deformation is the Box–Cox transformation for q = 1 − λ {\displaystyle q=1-\lambda } , proposed by George Box and David Cox in 1964.
In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated.This can be thought of as a generalisation of many classical methods—the method of moments, least squares, and maximum likelihood—as well as some recent methods like M-estimators.
where as above is the Laplace–Stieltjes transform of the service time distribution function. This relationship can only be solved exactly in special cases (such as the M/M/1 queue ), but for any s {\textstyle s} the value of ϕ ( s ) {\textstyle \phi (s)} can be calculated and by iteration with upper and lower bounds the distribution function ...
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
The standard deviation of an exponential distribution is equal to its mean, so its coefficient of variation is equal to 1. Distributions with CV < 1 (such as an Erlang distribution) are considered low-variance, while those with CV > 1 (such as a hyper-exponential distribution) are considered high-variance [citation needed].