Search results
Results from the WOW.Com Content Network
A sample space is usually denoted using set notation, and the possible ordered outcomes, or sample points, [5] are listed as elements in the set. It is common to refer to a sample space by the labels S, Ω, or U (for "universal set"). The elements of a sample space may be numbers, words, letters, or symbols.
In short, a probability space is a measure space such that the measure of the whole space is equal to one. The expanded definition is the following: a probability space is a triple (,,) consisting of: the sample space – an arbitrary non-empty set,
Probability space; Sample space; Event. ... is always finite, ... or equal to B, then the probability of A is less than, or equal to the probability of B. ...
In probability experiments on a finite sample space with a non-zero probability for each outcome, there is no difference between almost surely and surely (since having a probability of 1 entails including all the sample points); however, this distinction becomes important when the sample space is an infinite set, [2] because an infinite set can ...
In statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic.If an arbitrarily large number of samples, each involving multiple observations (data points), were separately used in order to compute one value of a statistic (such as, for example, the sample mean or sample variance) for each sample, then the sampling ...
Typically, when the sample space is finite, any subset of the sample space is an event (that is, all elements of the power set of the sample space are defined as events). However, this approach does not work well in cases where the sample space is uncountably infinite (most notably when the outcome must be some real number).
In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein each of some finite whole number n of outcome values are equally likely to be observed. Thus every one of the n outcome values has equal probability 1/n. Intuitively, a discrete uniform distribution is "a known, finite number ...
The product of two standard probability spaces is a standard probability space. The same holds for the product of countably many spaces, see (Rokhlin 1952, Sect. 3.4), (Haezendonck 1973, Proposition 12), and (Itô 1984, Theorem 2.4.3). A measurable subset of a standard probability space is a standard probability space.