Search results
Results from the WOW.Com Content Network
Two ladders of lengths a and b lie oppositely across an alley, as shown in the figure. The ladders cross at a height of h above the alley floor. What is the width of the alley? Martin Gardner presents and discusses the problem [1] in his book of mathematical puzzles published in 1979 and cites references to it as early as 1895. The crossed ...
A body is said to be "free" when it is singled out from other bodies for the purposes of dynamic or static analysis. The object does not have to be "free" in the sense of being unforced, and it may or may not be in a state of equilibrium; rather, it is not fixed in place and is thus "free" to move in response to forces and torques it may experience.
Ladder paradox: Introductory relativity problem about a ladder, a barn, and simultaneity. Mocanu's velocity composition paradox : Which formula should be used to transform velocities between non-collinear reference frames in special relativity?
The first nine blocks in the solution to the single-wide block-stacking problem with the overhangs indicated. In statics, the block-stacking problem (sometimes known as The Leaning Tower of Lire (Johnson 1955), also the book-stacking problem, or a number of other similar terms) is a puzzle concerning the stacking of blocks at the edge of a table.
A starting point for solving contact problems is to understand the effect of a "point-load" applied to an isotropic, homogeneous, and linear elastic half-plane, shown in the figure to the right. The problem may be either plane stress or plane strain. This is a boundary value problem of linear elasticity subject to the traction boundary conditions:
Hertz solved the contact problem in the absence of friction, for a simple geometry (curved surfaces with constant radii of curvature). Carter considered the rolling contact between a cylinder and a plane, as described above. A complete analytical solution is provided for the tangential traction.
where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor f D {\displaystyle f_{D}} against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of ...
Coulomb damping dissipates energy constantly because of sliding friction. The magnitude of sliding friction is a constant value; independent of surface area, displacement or position, and velocity. The system undergoing Coulomb damping is periodic or oscillating and restrained by the sliding friction.