enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adder (electronics) - Wikipedia

    en.wikipedia.org/wiki/Adder_(electronics)

    4-bit adder with logical block diagram shown Decimal 4-digit ripple carry adder. FA = full adder, HA = half adder. It is possible to create a logical circuit using multiple full adders to add N-bit numbers. Each full adder inputs a , which is the of the previous adder. This kind of adder is called a ripple-carry adder (RCA), since each carry ...

  3. Carry-skip adder - Wikipedia

    en.wikipedia.org/wiki/Carry-skip_adder

    A carry-skip adder [nb 1] (also known as a carry-bypass adder) is an adder implementation that improves on the delay of a ripple-carry adder with little effort compared to other adders. The improvement of the worst-case delay is achieved by using several carry-skip adders to form a block-carry-skip adder.

  4. Carry-lookahead adder - Wikipedia

    en.wikipedia.org/wiki/Carry-lookahead_adder

    A partial full adder, with propagate and generate outputs. Logic gate implementation of a 4-bit carry lookahead adder. A block diagram of a 4-bit carry lookahead adder. For each bit in a binary sequence to be added, the carry-lookahead logic will determine whether that bit pair will generate a carry or propagate a carry.

  5. Carry-select adder - Wikipedia

    en.wikipedia.org/wiki/Carry-select_adder

    A conditional sum adder [3] is a recursive structure based on the carry-select adder. In the conditional sum adder, the MUX level chooses between two n/2-bit inputs that are themselves built as conditional-sum adder. The bottom level of the tree consists of pairs of 2-bit adders (1 half adder and 3 full adders) plus 2 single-bit multiplexers.

  6. Dadda multiplier - Wikipedia

    en.wikipedia.org/wiki/Dadda_multiplier

    The Dadda multiplier is a hardware binary multiplier design invented by computer scientist Luigi Dadda in 1965. [1] It uses a selection of full and half adders to sum the partial products in stages (the Dadda tree or Dadda reduction) until two numbers are left.

  7. Block diagram - Wikipedia

    en.wikipedia.org/wiki/Block_diagram

    A block diagram is a diagram of a system in which the principal parts or functions are represented by blocks connected by lines that show the relationships of the blocks. [1] They are heavily used in engineering in hardware design , electronic design , software design , and process flow diagrams .

  8. Kogge–Stone adder - Wikipedia

    en.wikipedia.org/wiki/Kogge–Stone_adder

    An example of a 4-bit Kogge–Stone adder is shown in the diagram. Each vertical stage produces a "propagate" and a "generate" bit, as shown. The culminating generate bits (the carries) are produced in the last stage (vertically), and these bits are XOR'd with the initial propagate after the input (the red boxes) to produce the sum bits. E.g., the first (least-significant) sum bit is ...

  9. File:Half Adder.svg - Wikipedia

    en.wikipedia.org/wiki/File:Half_Adder.svg

    The following other wikis use this file: Usage on af.wikipedia.org Rekenaarwetenskap; Usage on ar.wikipedia.org جوامع منطقية; Usage on bcl.wikipedia.org