enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. First-order hold - Wikipedia

    en.wikipedia.org/wiki/First-order_hold

    First-order hold (FOH) is a mathematical model of the practical reconstruction of sampled signals that could be done by a conventional digital-to-analog converter (DAC) and an analog circuit called an integrator. For FOH, the signal is reconstructed as a piecewise linear approximation to the original signal that was sampled.

  3. Delay differential equation - Wikipedia

    en.wikipedia.org/wiki/Delay_differential_equation

    DDEs are also called time-delay systems, systems with aftereffect or dead-time, hereditary systems, equations with deviating argument, or differential-difference equations. They belong to the class of systems with the functional state , i.e. partial differential equations (PDEs) which are infinite dimensional, as opposed to ordinary ...

  4. Transfer function - Wikipedia

    en.wikipedia.org/wiki/Transfer_function

    The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...

  5. Infinite impulse response - Wikipedia

    en.wikipedia.org/wiki/Infinite_impulse_response

    The bilinear transform is a first-order approximation of the natural logarithm function that is an exact mapping of the z-plane to the s-plane. When the Laplace transform is performed on a discrete-time signal (with each element of the discrete-time sequence attached to a correspondingly delayed unit impulse), the result is precisely the Z ...

  6. Proportional–integral–derivative controller - Wikipedia

    en.wikipedia.org/wiki/Proportional–integral...

    The transfer function for a first-order process with dead time is = + (), where k p is the process gain, τ p is the time constant, θ is the dead time, and u(s) is a step change input. Converting this transfer function to the time domain results in

  7. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The transfer function coefficients can also be used to construct another type of canonical form ˙ = [] + [] () = [] (). This state-space realization is called observable canonical form because the resulting model is guaranteed to be observable (i.e., because the output exits from a chain of integrators, every state has an effect on the output).

  8. AOL Mail

    mail.aol.com/?icid=aol.com-nav

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Proportional control - Wikipedia

    en.wikipedia.org/wiki/Proportional_control

    For a first-order process, a general transfer function is = +.Combining this with the closed-loop transfer function above returns = + + +.Simplifying this equation results in = + where = + and = +.