Search results
Results from the WOW.Com Content Network
Radiant heating and cooling is a category of HVAC technologies that exchange heat by both convection and radiation with the environments they are designed to heat or cool. There are many subcategories of radiant heating and cooling, including: "radiant ceiling panels", [ 1 ] "embedded surface systems", [ 1 ] "thermally active building systems ...
[30] [31] PDRC can be contrasted with traditional compression-based cooling systems (e.g., air conditioners) that consume substantial amounts of energy, have a net heating effect (heating the outdoors more than cooling the indoors), require ready access to electric power and often employ coolants that deplete the ozone or have a strong ...
The three basic types of radiant cooling are direct, indirect, and fluorescent: Direct radiant cooling - In a building designed to optimize direct radiation cooling, the building roof acts as a heat sink to absorb the daily internal loads. The roof acts as the best heat sink because it is the greatest surface exposed to the night sky.
A chilled beam is a type of radiation/convection HVAC system designed to heat and cool large buildings through the use of water. [1] This method removes most of the zone sensible local heat gains and allows the flow rate of pre-conditioned air from the air handling unit to be reduced, lowering by 60% to 80% the ducted design airflow rate and the equipment capacity requirements.
A heating system is a mechanism for maintaining temperatures at an acceptable level; by using thermal energy within a home, office, or other dwelling.
In a steam heating system, each room is equipped with a radiator which is connected to a source of low-pressure steam (a boiler). Steam entering the radiator condenses and gives up its latent heat, returning to liquid water. The radiator in turn heats the air of the room, and provides some direct radiant heat. The condensate water returns to ...
A heat pump might use 1 J for every 4 J it delivers giving a COP of 4. A system that only uses a 30 W fan to more-evenly distribute 10 kW of solar heat through an entire house would have a COP of 300. Passive solar building design is often a foundational element of a cost-effective zero energy building.
This is done with effective design of the building, interior and with the use of high temperature radiant cooling and low temperature radiant heating. [8] In outdoor settings, mean radiant temperature is affected by air temperature but also by the radiation of absorbed heat from the materials used in sidewalks, streets, and buildings.