Search results
Results from the WOW.Com Content Network
Pangaea or Pangea (/ p æ n ˈ dʒ iː ə / pan-JEE-ə) [1] was a supercontinent that existed during the late Paleozoic and early Mesozoic eras. [2] It assembled from the earlier continental units of Gondwana , Euramerica and Siberia during the Carboniferous approximately 335 million years ago, and began to break apart about 200 million years ...
Map of Earth during the Early Permian, around 285 million years ago, showing Central Pangean mountain range at equator. The Central Pangean Mountains were formed during the collision of Euramerica and northern Gondwana as part of the Variscan and Alleghanian orogenies, which began during the Carboniferous approximately 340 million years ago, and complete by the beginning of the Permian around ...
Soon, Pangaea began to split up and North America began drifting north and westward. During the latter Jurassic, the floodplains of the western states were home to dinosaurs like Allosaurus, Apatosaurus, and Stegosaurus. During the Cretaceous, the Gulf of Mexico expanded until it split North America in half. Plesiosaurs and mosasaurs swam in ...
Rodinia (from the Russian родина, rodina, meaning "motherland, birthplace" [1] [2] [3]) was a Mesoproterozoic and Neoproterozoic supercontinent that assembled 1.26–0.90 billion years ago (Ga) [4] and broke up 750–633 million years ago (Ma). [5]
Pangaea's supercontinent cycle is a good example of the efficiency of using the presence or lack of these entities to record the development, tenure, and break-up of supercontinents. There is a sharp decrease in passive margins between 500 and 350 Ma during the timing of Pangaea's assembly.
The opening of the North Atlantic Ocean is a geological event that has occurred over millions of years, during which the supercontinent Pangea broke up. As modern-day Europe (Eurasian Plate) and North America (North American Plate) separated during the final breakup of Pangea in the early Cenozoic Era, [1] they formed the North Atlantic Ocean.
In North America it shows as later phases of the Acadian orogeny. This was happening at around the Equator during the later Carboniferous, forming Pangaea with Avalonia near its centre but partially flooded by shallow sea. [14] In the Jurassic, Pangaea split into Laurasia and Gondwana, with Avalonia as part of Laurasia. [15]
Palaeogeographical evidence contributed to the development of continental drift theory, and continues to inform current plate tectonic theories, yielding information about the shape and latitudinal location of supercontinents such as Pangaea and ancient oceans such as Panthalassa, thus enabling reconstruction of prehistoric continents and oceans.