Search results
Results from the WOW.Com Content Network
A number n that has more divisors than any x < n is a highly composite number (though the first two such numbers are 1 and 2). Composite numbers have also been called "rectangular numbers", but that name can also refer to the pronic numbers, numbers that are the product of two consecutive integers. Yet another way to classify composite numbers ...
Fixed-point number with a variety of precisions and a programmer-selected scale. Complex number in C99, Fortran, Common Lisp, Python, D, Go. This is two floating-point numbers, a real part and an imaginary part. Enumerated type sequence of names for allowed values; can improve readability and type checking. Rational number in Common Lisp
Highly composite numbers greater than 6 are also abundant numbers. One need only look at the three largest proper divisors of a particular highly composite number to ascertain this fact. It is false that all highly composite numbers are also Harshad numbers in base 10. The first highly composite number that is not a Harshad number is ...
Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way. If one of the factors ...
[4] 5-smooth numbers are also called regular numbers or Hamming numbers; [5] 7-smooth numbers are also called humble numbers, [6] and sometimes called highly composite, [7] although this conflicts with another meaning of highly composite numbers. Here, note that B itself is not required to appear among the factors of a B-smooth number.
An alternative and equivalent definition of Carmichael numbers is given by Korselt's criterion.. Theorem (A. Korselt 1899): A positive composite integer is a Carmichael number if and only if is square-free, and for all prime divisors of , it is true that .
In recreational mathematics, a Keith number or repfigit number (short for repetitive Fibonacci-like digit) is a natural number in a given number base with digits such that when a sequence is created such that the first terms are the digits of and each subsequent term is the sum of the previous terms, is part of the sequence.
For any possible exponent, whichever integer has the greatest ratio is a superior highly composite number. It is a stronger restriction than that of a highly composite number, which is defined as having more divisors than any smaller positive integer. The first ten superior highly composite numbers and their factorization are listed.