Search results
Results from the WOW.Com Content Network
Around 15% of amacrine cells are neither GABAergic or glycinergic. [2] These amacrine cells are sometimes known as nGnG amacrine cells, and it is thought that transcription factors that act on progenitors decide the fate of amacrine cells. One transcription factor that was found to be selectively expressed in nGnG amacrine cells is Neurod6 [5]
Lateral inhibition is described as a part of the Notch signaling pathway, a type of cell–cell interaction. Specifically, during asymmetric cell division one daughter cell adopts a particular fate that causes it to be copy of the original cell and the other daughter cell is inhibited from becoming a copy.
AII (A2) amacrine cells are a subtype of amacrine cells. Amacrine cells are neurons that exist in the retina of mammals to assist in interpreting photoreceptive signals. AII amacrine cells serve the critical role of transferring light signals from rod photoreceptors to the retinal ganglion cells (which contain the axons of the optic nerve).
Parietal epithelial cell (PEC) Podocyte; Angioblast → Endothelial cell; Mesangial cell. Intraglomerular; Extraglomerular; Juxtaglomerular cell; Macula densa cell; Stromal cell → Interstitial cell → Telocytes; Kidney proximal tubule brush border cell; Kidney distal tubule cell; Connecting tubule cells; α-intercalated cell; β-intercalated ...
On the other hand, in order not to obscure the trapezoid body, the efferent fibers of the terminal nuclei on the right side have been resected in a considerable portion of their extent. The trapezoid body, therefore, shows only one-half of its fibers, viz., those that come from the left. 1.
It is called preauricular sinus which, according to the U.S. National Institutes of Health, or NIH, "generally appears as a tiny skin-lined hole or pit, often just in front of the upper ear where ...
The mastoid antrum (tympanic antrum, antrum mastoideum, Valsalva's antrum) is an air space in the petrous portion of the temporal bone, communicating posteriorly with the mastoid cells and anteriorly with the epitympanic recess of the middle ear via the aditus to mastoid antrum (entrance to the mastoid antrum). These air spaces function as ...
Bipolar cells effectively transfer information from rods and cones to ganglion cells. The horizontal cells and the amacrine cells complicate matters somewhat. The horizontal cells introduce lateral inhibition to the dendrites and give rise to the center-surround inhibition which is apparent in retinal receptive fields.