Search results
Results from the WOW.Com Content Network
Although there are examples to the contrary, it should be stressed that the commonly used "units" of % w/v are grams per millilitre (g/mL). 1% m/v solutions are sometimes thought of as being gram/100 mL but this detracts from the fact that % m/v is g/mL; 1 g of water has a volume of approximately 1 mL (at standard temperature and pressure) and ...
For some usage examples, consider the conversion of 1 SCCM to kg/s of a gas of molecular weight , where is in kg/kmol. Furthermore, consider standard conditions of 101325 Pa and 273.15 K, and assume the gas is an ideal gas (i.e., =).
Conversion of units is the conversion of the unit of measurement in which a quantity is expressed, typically through a multiplicative conversion factor that changes the unit without changing the quantity. This is also often loosely taken to include replacement of a quantity with a corresponding quantity that describes the same physical property.
For a fixed mass of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional. [2] Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant.
According to Sazonov and Shaw, [7] the dimensionless Bunsen coefficient is defined as "the volume of saturating gas, V1, reduced to T° = 273.15 K, p° = 1 bar, which is absorbed by unit volume V 2 * of pure solvent at the temperature of measurement and partial pressure of 1 bar." If the gas is ideal, the pressure cancels out, and the ...
In Canada, a teaspoon is historically 1 ⁄ 6 imperial fluid ounce (4.74 mL) and a tablespoon is 1 ⁄ 2 imperial fl oz (14.21 mL). In both Britain and Canada, cooking utensils commonly come in 5 mL for teaspoons and 15 mL for tablespoons, hence why it is labelled as that on the chart. The volume measures here are for comparison only.
Expressed concretely, 100 mL of hydrogen combine with 50 mL of oxygen to give 100 mL of water vapor: Hydrogen(100 mL) + Oxygen(50 mL) = Water(100 mL). Thus, the volumes of hydrogen and oxygen which combine (i.e., 100mL and 50mL) bear a simple ratio of 2:1, as also is the case for the ratio of product water vapor to reactant oxygen.
which is a constant for a fixed pressure and a fixed temperature. An equivalent formulation of the ideal gas law can be written using Boltzmann constant k B, as =, where N is the number of particles in the gas, and the ratio of R over k B is equal to the Avogadro constant. In this form, for V/N is a constant, we have