Search results
Results from the WOW.Com Content Network
The vortex lattice method is built on the theory of ideal flow, also known as Potential flow.Ideal flow is a simplification of the real flow experienced in nature, however for many engineering applications this simplified representation has all of the properties that are important from the engineering point of view.
Engineering Equation Solver (EES) is a commercial software package used for solution of systems of simultaneous non-linear equations.It provides many useful specialized functions and equations for the solution of thermodynamics and heat transfer problems, making it a useful and widely used program for mechanical engineers working in these fields.
A vortex tube is the surface in the continuum formed by all vortex lines passing through a given (reducible) closed curve in the continuum. The 'strength' of a vortex tube (also called vortex flux ) [ 11 ] is the integral of the vorticity across a cross-section of the tube, and is the same everywhere along the tube (because vorticity has zero ...
Continuous vortex sheet approximation by panel method. Roll-up of a vortex sheet due to an initial sinusoidal perturbation. Note that the integral in the above equation is a Cauchy principal value integral. The initial condition for a flat vortex sheet with constant strength is (,) =. The flat vortex sheet is an equilibrium solution.
The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid (in terms of vector calculus this is the curl of the flow velocity). The governing equation is:
As the fluid flows outward, the area of flow increases. As a result, to satisfy continuity equation, the velocity decreases and the streamlines spread out. The velocity at all points at a given distance from the source is the same. Fig 2 - Streamlines and potential lines for source flow. The velocity of fluid flow can be given as -
In fluid dynamics, aerodynamic potential flow codes or panel codes are used to determine the fluid velocity, and subsequently the pressure distribution, on an object. This may be a simple two-dimensional object, such as a circle or wing, or it may be a three-dimensional vehicle.
Schematic of D2Q9 lattice vectors for 2D Lattice Boltzmann. Unlike CFD methods that solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice.