Search results
Results from the WOW.Com Content Network
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster.
In assessing whether a given distribution is suited to a data-set, the following tests and their underlying measures of fit can be used: Bayesian information criterion; Kolmogorov–Smirnov test; Cramér–von Mises criterion; Anderson–Darling test; Berk-Jones tests [1] [2] Shapiro–Wilk test; Chi-squared test; Akaike information criterion ...
Concrete Slump Test Dataset Concrete slump flow given in terms of properties. Features of concrete given such as fly ash, water, etc. 103 Text Regression 2009 [235] [236] I. Yeh Musk Dataset Predict if a molecule, given the features, will be a musk or a non-musk. 168 features given for each molecule. 6598 Text Classification 1994 [237]
In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.
The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]
For example, one might find that an extraversion or neuroticism dimension accounted for a substantial amount of shared variance between the two tests. One can also use canonical-correlation analysis to produce a model equation which relates two sets of variables, for example a set of performance measures and a set of explanatory variables, or a ...