Search results
Results from the WOW.Com Content Network
Tombstones are a mechanism to detect dangling pointers and mitigate the problems they can cause in computer programs. Dangling pointers can appear in certain computer programming languages, e.g. C, C++ and assembly languages. A tombstone is a structure that acts as an intermediary between a pointer and its target, often heap-dynamic data in memory.
In computer science, pointer analysis, or points-to analysis, is a static code analysis technique that establishes which pointers, or heap references, can point to which variables, or storage locations. It is often a component of more complex analyses such as escape analysis. A closely related technique is shape analysis.
Tombstone diagram representing an Ada compiler written in C that produces machine code. Representation of the process of bootstrapping a C compiler written in C, by compiling it using another compiler written in machine code. To explain, the lefthand T is a C compiler written in C that produces machine code.
The example C code below illustrates how structure objects are dynamically allocated and referenced. The standard C library provides the function malloc() for allocating memory blocks from the heap. It takes the size of an object to allocate as a parameter and returns a pointer to a newly allocated block of memory suitable for storing the ...
All loops must have fixed bounds. This prevents runaway code. Avoid heap memory allocation. Restrict functions to a single printed page. Use a minimum of two runtime assertions per function. Restrict the scope of data to the smallest possible. Check the return value of all non-void functions, or cast to void to indicate the return value is useless.
In computer science, instruction selection is the stage of a compiler backend that transforms its middle-level intermediate representation (IR) into a low-level IR. In a typical compiler, instruction selection precedes both instruction scheduling and register allocation; hence its output IR has an infinite set of pseudo-registers (often known as temporaries) and may still be – and typically ...
If the resulting pointer is not correctly aligned for the pointed-to type, the behavior is undefined." Therefore one should be very careful with the use of type punning. Some situations, such as time-critical code that the compiler otherwise fails to optimize, may require dangerous code.
Alias analysis is a technique in compiler theory, used to determine if a storage location may be accessed in more than one way. Two pointers are said to be aliased if they point to the same location. Alias analysis techniques are usually classified by flow-sensitivity and context-sensitivity. They may determine may-alias or must-alias information.