Search results
Results from the WOW.Com Content Network
Here i represents the equation number, r = 1, …, R is the individual observation, and we are taking the transpose of the column vector. The number of observations R is assumed to be large, so that in the analysis we take R → ∞ {\displaystyle \infty } , whereas the number of equations m remains fixed.
A number of authors have argued that large data sets are not a practical limitation, [21] [57] although the severity of this issue depends strongly on the characteristics of the models. Several aspects of a modeling problem can contribute to the computational complexity, such as the sample size, number of observed variables or features, time or ...
In some instances of bivariate data, it is determined that one variable influences or determines the second variable, and the terms dependent and independent variables are used to distinguish between the two types of variables. In the above example, the length of a person's legs is the independent variable.
Independent component analysis attempts to decompose a multivariate signal into independent non-Gaussian signals. As an example, sound is usually a signal that is composed of the numerical addition, at each time t, of signals from several sources.
In mathematics, a function is a rule for taking an input (in the simplest case, a number or set of numbers) [5] and providing an output (which may also be a number). [5] A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable. [6]
In combinatorics, a matroid / ˈ m eɪ t r ɔɪ d / is a structure that abstracts and generalizes the notion of linear independence in vector spaces.There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats.
A nonlinear map : sends a small square (left, in red) to a distorted parallelogram (right, in red). The Jacobian at a point gives the best linear approximation of the distorted parallelogram near that point (right, in translucent white), and the Jacobian determinant gives the ratio of the area of the approximating parallelogram to that of the ...
This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2] That is, they show how linear combinations of certain digits (components) of each codeword equal ...