Search results
Results from the WOW.Com Content Network
Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.
XOR can be used to swap two numeric variables in computers, using the XOR swap algorithm; however this is regarded as more of a curiosity and not encouraged in practice. XOR linked lists leverage XOR properties in order to save space to represent doubly linked list data structures.
XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate implements an exclusive or from mathematical logic; that is, a true output results if one, and only one, of the inputs to the gate is true. If both inputs are false (0 ...
This method swaps two variables by adding and subtracting their values. This is rarely used in practical applications, mainly because: It can only swap numeric variables; it may not be possible or logical to add or subtract complex data types, like containers. When swapping variables of a fixed size, arithmetic overflow becomes an issue.
A maximum-length LFSR produces an m-sequence (i.e., it cycles through all possible 2 m − 1 states within the shift register except the state where all bits are zero), unless it contains all zeros, in which case it will never change. As an alternative to the XOR-based feedback in an LFSR, one can also use XNOR. [2]
This image or media file may be available on the Wikimedia Commons as File:Python 3.3.2 reference document.pdf, where categories and captions may be viewed. While the license of this file may be compliant with the Wikimedia Commons, an editor has requested that the local copy be kept too.
The first has one 32-bit word of state, and period 2 32 −1. The second has one 64-bit word of state and period 2 64 −1. The last one has four 32-bit words of state, and period 2 128 −1. The 128-bit algorithm passes the diehard tests. However, it fails the MatrixRank and LinearComp tests of the BigCrush test suite from the TestU01 framework.
Matthias Kramm's gfxpoly, a free C library for 2D polygons (BSD license). Klaas Holwerda's Boolean, a C++ library for 2D polygons. David Kennison's Polypack, a FORTRAN library based on the Vatti algorithm. Klamer Schutte's Clippoly, a polygon clipper written in C++. Michael Leonov's poly_Boolean, a C++ library, which extends the Schutte algorithm.