Search results
Results from the WOW.Com Content Network
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
The Indian Olympiad Qualifier in Mathematics (IOQM) is a national exam for students in grades 8-12. It's used to shortlist students for HBCSE's Mathematical Olympiad program. Students must be under 20 years old by June 30 of the IMO year and cannot have passed Class 12.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
A tautochrone curve or isochrone curve (from Ancient Greek ταὐτό 'same' ἴσος 'equal' and χρόνος 'time') is the curve for which the time taken by an object sliding without friction in uniform gravity to its lowest point is independent of its starting point on the curve.
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.
A particular solution is derived from the general solution by setting the constants to particular values, often chosen to fulfill set 'initial conditions or boundary conditions'. [22] A singular solution is a solution that cannot be obtained by assigning definite values to the arbitrary constants in the general solution.
The transport theorem (or transport equation, rate of change transport theorem or basic kinematic equation or Bour's formula, named after: Edmond Bour) is a vector equation that relates the time derivative of a Euclidean vector as evaluated in a non-rotating coordinate system to its time derivative in a rotating reference frame.
The solutions to the Hamilton–Jacobi equations for this Hamiltonian are then the same as the geodesics on the manifold. In particular, the Hamiltonian flow in this case is the same thing as the geodesic flow. The existence of such solutions, and the completeness of the set of solutions, are discussed in detail in the article on geodesics.