Search results
Results from the WOW.Com Content Network
Applying machine learning (ML) (including deep learning) methods to the study of quantum systems is an emergent area of physics research.A basic example of this is quantum state tomography, where a quantum state is learned from measurement. [1]
The National Programme on Technology Enhanced Learning (NPTEL) is an Indian e-learning platform for university-level science, technology, engineering, and mathematics (STEM) subjects. NPTEL is the largest e-repository in the world of courses in engineering, basic sciences and selected humanities and management subjects. [ 1 ]
Foundations of Machine Learning. MIT Press, 2018. Chapter 2 contains a detailed treatment of PAC-learnability. Readable through open access from the publisher. D. Haussler. Overview of the Probably Approximately Correct (PAC) Learning Framework. An introduction to the topic. L. Valiant. Probably Approximately Correct. Basic Books, 2013.
They were heavily popularized and promoted by Geoffrey Hinton, Terry Sejnowski and Yann LeCun in cognitive sciences communities, particularly in machine learning, [2] as part of "energy-based models" (EBM), because Hamiltonians of spin glasses as energy are used as a starting point to define the learning task. [5]
Feature learning is intended to result in faster training or better performance in task-specific settings than if the data was input directly (compare transfer learning). [1] In machine learning (ML), feature learning or representation learning [2] is a set of techniques that allow a system to automatically discover the representations needed ...
The first is a hyperbolic tangent that ranges from −1 to 1, while the other is the logistic function, which is similar in shape but ranges from 0 to 1. Here y i {\displaystyle y_{i}} is the output of the i {\displaystyle i} th node (neuron) and v i {\displaystyle v_{i}} is the weighted sum of the input connections.
"High school physics textbooks" (PDF). Reports on high school physics. American Institute of Physics; Zitzewitz, Paul W. (2005). Physics: principles and problems. New York: Glencoe/McGraw-Hill. ISBN 978-0078458132
The plain transformer architecture had difficulty converging. In the original paper [1] the authors recommended using learning rate warmup. That is, the learning rate should linearly scale up from 0 to maximal value for the first part of the training (usually recommended to be 2% of the total number of training steps), before decaying again.