enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Salt (cryptography) - Wikipedia

    en.wikipedia.org/wiki/Salt_(cryptography)

    The salt and hash are then stored in the database. To later test if a password a user enters is correct, the same process can be performed on it (appending that user's salt to the password and calculating the resultant hash): if the result does not match the stored hash, it could not have been the correct password that was entered.

  3. Security of cryptographic hash functions - Wikipedia

    en.wikipedia.org/wiki/Security_of_cryptographic...

    SWIFFT is an example of a hash function that circumvents these security problems. It can be shown that, for any algorithm that can break SWIFFT with probability p within an estimated time t , one can find an algorithm that solves the worst-case scenario of a certain difficult mathematical problem within time t ′ depending on t and p .

  4. Confusion and diffusion - Wikipedia

    en.wikipedia.org/wiki/Confusion_and_diffusion

    These concepts are also important in the design of cryptographic hash functions, and pseudorandom number generators, where decorrelation of the generated values is the main feature. Diffusion (and its avalanche effect) is also applicable to non-cryptographic hash functions.

  5. Cryptographic hash function - Wikipedia

    en.wikipedia.org/wiki/Cryptographic_hash_function

    Checksum algorithms, such as CRC32 and other cyclic redundancy checks, are designed to meet much weaker requirements and are generally unsuitable as cryptographic hash functions. For example, a CRC was used for message integrity in the WEP encryption standard, but an attack was readily discovered, which exploited the linearity of the checksum.

  6. Avalanche effect - Wikipedia

    en.wikipedia.org/wiki/Avalanche_effect

    In cryptography, the avalanche effect is the desirable property of cryptographic algorithms, typically block ciphers [1] and cryptographic hash functions, wherein if an input is changed slightly (for example, flipping a single bit), the output changes significantly (e.g., half the output bits flip).

  7. Hash-based cryptography - Wikipedia

    en.wikipedia.org/wiki/Hash-based_cryptography

    Hash-based signature schemes use one-time signature schemes as their building block. A given one-time signing key can only be used to sign a single message securely. Indeed, signatures reveal part of the signing key. The security of (hash-based) one-time signature schemes relies exclusively on the security of an underlying hash function.

  8. HMAC - Wikipedia

    en.wikipedia.org/wiki/HMAC

    HMAC-SHA1 generation. In cryptography, an HMAC (sometimes expanded as either keyed-hash message authentication code or hash-based message authentication code) is a specific type of message authentication code (MAC) involving a cryptographic hash function and a secret cryptographic key.

  9. Collision resistance - Wikipedia

    en.wikipedia.org/wiki/Collision_resistance

    In cryptography, collision resistance is a property of cryptographic hash functions: a hash function H is collision-resistant if it is hard to find two inputs that hash to the same output; that is, two inputs a and b where a ≠ b but H(a) = H(b).