Search results
Results from the WOW.Com Content Network
PhET Interactive Simulations is part of the University of Colorado Boulder which is a member of the Association of American Universities. [10] The team changes over time and has about 16 members consisting of professors, post-doctoral students, researchers, education specialists, software engineers (sometimes contractors), educators, and administrative assistants. [11]
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
where: k 1 is the rate coefficient for the reaction that consumes A and B; k −1 is the rate coefficient for the backwards reaction, which consumes P and Q and produces A and B. The constants k 1 and k −1 are related to the equilibrium coefficient for the reaction (K) by the following relationship (set v=0 in balance):
where k s is the rate of the studied reaction and is the rate of the reference reaction (R = methyl). δ is a reaction constant that describes the susceptibility of a reaction series to steric effects. For the definition reaction series δ was set to 1 and E s for the reference reaction was set to zero. This equation is combined with the ...
However, all reactions can be represented as a series of elementary reactions and, if the mechanism is known in detail, the rate equation for each individual step is given by the expression so that the overall rate equation can be derived from the individual steps. When this is done the equilibrium constant is obtained correctly from the rate ...
That is, r −1 ≪ r 2, so that r 1 − r 2 ≈ 0. But the overall rate of reaction is the rate of formation of final product (here CO 2), so that r = r 2 ≈ r 1. That is, the overall rate is determined by the rate of the first step, and (almost) all molecules that react at the first step continue to the fast second step.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more
The kinetic order of any elementary reaction or reaction step is equal to its molecularity, and the rate equation of an elementary reaction can therefore be determined by inspection, from the molecularity. [1] The kinetic order of a complex (multistep) reaction, however, is not necessarily equal to the number of molecules involved.