Search results
Results from the WOW.Com Content Network
EHD4 is implicated in vesicular transport from early endosome to ERC as well as in the lysosomal degradation pathway. Recent studies have shown that the EHD4 protein may only function within specific tissues. Nerve growth receptors such as TrkA/TrkB are commonly transported via EDH4.
98878 Ensembl ENSG00000103966 ENSMUSG00000027293 UniProt Q9H223 Q9EQP2 RefSeq (mRNA) NM_139265 NM_133838 RefSeq (protein) NP_644670 NP_598599 Location (UCSC) Chr 15: 41.9 – 41.97 Mb Chr 2: 119.92 – 119.99 Mb PubMed search Wikidata View/Edit Human View/Edit Mouse EH-domain containing 4, also known as EHD4, is a human gene belonging to the EHD protein family. References ^ a b c GRCh38 ...
The EH domain is a common motif in a family of proteins involved in endocytic trafficking. This family of four paralogs (EHD1-EHD4) has been implicated in receptor intracellular trafficking, particularly in internalization and recycling to the plasma membrane. The list of functions of EHD proteins is just starting to be populated. [8]
Mechanism of clathrin-dependent endocytosis. Receptor-mediated endocytosis (RME), also called clathrin-mediated endocytosis, is a process by which cells absorb metabolites, hormones, proteins – and in some cases viruses – by the inward budding of the plasma membrane (invagination).
The endocytic pathway of mammalian cells consists of distinct membrane compartments, which internalize molecules from the plasma membrane and recycle them back to the surface (as in early endosomes and recycling endosomes), or sort them to degradation (as in late endosomes and lysosomes). The principal components of the endocytic pathway are: [3]
Late endosomes/MVBs are sometimes called endocytic carrier vesicles, but this term was used to describe vesicles that bud from early endosomes and fuse with late endosomes. However, several observations (described above) have now demonstrated that it is more likely that transport between these two compartments occurs by a maturation process ...
Intracellular transport is the movement of vesicles and substances within a cell. Intracellular transport is required for maintaining homeostasis within the cell by responding to physiological signals. [1] Proteins synthesized in the cytosol are distributed to their respective organelles, according to their specific amino acid’s sorting ...
Coat-proteins, like clathrin, are used to build small vesicles in order to transport molecules within cells. The endocytosis and exocytosis of vesicles allows cells to communicate, to transfer nutrients, to import signaling receptors, to mediate an immune response after sampling the extracellular world, and to clean up the cell debris left by ...