Search results
Results from the WOW.Com Content Network
To convert integer decimals to octal, divide the original number by the largest possible power of 8 and divide the remainders by successively smaller powers of 8 until the power is 1. The octal representation is formed by the quotients, written in the order generated by the algorithm. For example, to convert 125 10 to octal: 125 = 8 2 × 1 + 61
A binary clock might use LEDs to express binary values. In this clock, each column of LEDs shows a binary-coded decimal numeral of the traditional sexagesimal time.. The common names are derived somewhat arbitrarily from a mix of Latin and Greek, in some cases including roots from both languages within a single name. [27]
Binary is also easily converted to the octal numeral system, since octal uses a radix of 8, which is a power of two (namely, 2 3, so it takes exactly three binary digits to represent an octal digit). The correspondence between octal and binary numerals is the same as for the first eight digits of hexadecimal in the table above. Binary 000 is ...
That is, the value of an octal "10" is the same as a decimal "8", an octal "20" is a decimal "16", and so on. In a hexadecimal system, there are 16 digits, 0 through 9 followed, by convention, with A through F. That is, a hexadecimal "10" is the same as a decimal "16" and a hexadecimal "20" is the same as a decimal "32".
Use: {{Octal|x}} where x is the decimal number. Example: {{Octal|4632}} yields 11030 8 . Numbers outside the range of -9007199254740992 to 9007199254740992 may lose precision.
The Aiken code (also known as 2421 code) [1] [2] is a complementary binary-coded decimal (BCD) code. A group of four bits is assigned to the decimal digits from 0 to 9 according to the following table. The code was developed by Howard Hathaway Aiken and is still used today in digital clocks, pocket calculators and similar devices [citation needed].
For example, "11" represents the number eleven in the decimal or base-10 numeral system (today, the most common system globally), the number three in the binary or base-2 numeral system (used in modern computers), and the number two in the unary numeral system (used in tallying scores). The number the numeral represents is called its value.
When converting from binary to octal every 3 bits relate to one and only one octal digit. Hexadecimal, decimal, octal, and a wide variety of other bases have been used for binary-to-text encoding, implementations of arbitrary-precision arithmetic, and other applications. For a list of bases and their applications, see list of numeral systems.