enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayesian network - Wikipedia

    en.wikipedia.org/wiki/Bayesian_network

    Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms.

  3. Recursive Bayesian estimation - Wikipedia

    en.wikipedia.org/wiki/Recursive_Bayesian_estimation

    In probability theory, statistics, and machine learning, recursive Bayesian estimation, also known as a Bayes filter, is a general probabilistic approach for estimating an unknown probability density function recursively over time using incoming measurements and a mathematical process model.

  4. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    Bayesian inference (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available.

  5. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    [3] [4] For example, in Bayesian inference, Bayes' theorem can be used to estimate the parameters of a probability distribution or statistical model. Since Bayesian statistics treats probability as a degree of belief, Bayes' theorem can directly assign a probability distribution that quantifies the belief to the parameter or set of parameters ...

  6. Bayesian probability - Wikipedia

    en.wikipedia.org/wiki/Bayesian_probability

    Bayesian probability (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation [2] representing a state of knowledge [3] or as quantification of a personal belief.

  7. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    The strength (naivety) of this assumption is what gives the classifier its name. These classifiers are among the simplest Bayesian network models. [1] Naive Bayes classifiers are highly scalable, requiring a number of parameters linear in the number of variables (features/predictors) in a learning problem.

  8. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. [1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the ...

  9. Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Bayes_classifier

    In practice, as in most of statistics, the difficulties and subtleties are associated with modeling the probability distributions effectively—in this case, ⁡ (= =). The Bayes classifier is a useful benchmark in statistical classification .