enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    which if we make the simplifying assumption that b = 0, is equal to + + () This polynomial is of degree six, but only of degree three in z 2, and so the corresponding equation is solvable. By trial we can determine which three roots are the correct ones, and hence find the solutions of the quartic.

  3. Solution in radicals - Wikipedia

    en.wikipedia.org/wiki/Solution_in_radicals

    However, for any degree there are some polynomial equations that have algebraic solutions; for example, the equation = can be solved as =. The eight other solutions are nonreal complex numbers , which are also algebraic and have the form x = ± r 2 10 , {\displaystyle x=\pm r{\sqrt[{10}]{2}},} where r is a fifth root of unity , which can be ...

  4. Quadratic irrational number - Wikipedia

    en.wikipedia.org/wiki/Quadratic_irrational_number

    Since b and 2a are both integers, asking when the above quantity is irrational is the same as asking when the square root of an integer is irrational. The answer to this is that the square root of any natural number that is not a square number is irrational. The square root of 2 was the first such number to be proved irrational.

  5. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.

  6. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    [3] [4] Abel–Ruffini theorem refers also to the slightly stronger result that there are equations of degree five and higher that cannot be solved by radicals. This does not follow from Abel's statement of the theorem, but is a corollary of his proof, as his proof is based on the fact that some polynomials in the coefficients of the equation ...

  7. Algebraic number - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number

    If its minimal polynomial has degree n, then the algebraic number is said to be of degree n. For example, all rational numbers have degree 1, and an algebraic number of degree 2 is a quadratic irrational. The algebraic numbers are dense in the reals. This follows from the fact they contain the rational numbers, which are dense in the reals ...

  8. Square root of 5 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_5

    The approximation ⁠ 161 / 72 ⁠ (≈ 2.23611) for the square root of five can be used. Despite having a denominator of only 72, it differs from the correct value by less than ⁠ 1 / 10,000 ⁠ (approx. 4.3 × 10 −5). As of January 2022, the numerical value in decimal of the square root of 5 has been computed to at least 2,250,000,000,000 ...

  9. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...