Search results
Results from the WOW.Com Content Network
Matching is a statistical technique that evaluates the effect of a treatment by comparing the treated and the non-treated units in an observational study or quasi-experiment (i.e. when the treatment is not randomly assigned).
A paired difference test is designed for situations where there is dependence between pairs of measurements (in which case a test designed for comparing two independent samples would not be appropriate). That applies in a within-subjects study design, i.e., in a study where the same set of subjects undergo both of the conditions being compared.
You are confronted with the three apples in pairs without the benefit of a sensitive scale. Therefore, when presented A and B alone, you are indifferent between apple A and apple B; and you are indifferent between apple B and apple C when presented B and C alone. However, when the pair A and C are shown, you prefer C over A.
Radius matching: all matches within a particular radius are used -- and reused between treatment units. Kernel matching: same as radius matching, except control observations are weighted as a function of the distance between the treatment observation's propensity score and control match propensity score. One example is the Epanechnikov kernel.
If such a pair exists, the matching is not stable, in the sense that the members of this pair would prefer to leave the system and be matched to each other, possibly leaving other participants unmatched. A stable matching always exists, and the algorithmic problem solved by the Gale–Shapley algorithm is to find one. [3]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Paired samples t-tests typically consist of a sample of matched pairs of similar units, or one group of units that has been tested twice (a "repeated measures" t-test). A typical example of the repeated measures t -test would be where subjects are tested prior to a treatment, say for high blood pressure, and the same subjects are tested again ...
Sphericity of the covariance matrix: ensures the F ratios match the F distribution; For the between-subject effects to meet the assumptions of the analysis of variance, the variance for any level of a group must be the same as the variance for the mean of all other levels of the group.