enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Balancing selection - Wikipedia

    en.wikipedia.org/wiki/Balancing_selection

    All modern research has shown that this significant genetic variation is ubiquitous in panmictic populations. There are several mechanisms (which are not exclusive within any given population) by which balancing selection works to maintain polymorphism. The two major and most studied are heterozygote advantage and frequency-dependent selection.

  3. Mutation–selection balance - Wikipedia

    en.wikipedia.org/wiki/Mutation–selection_balance

    Nevertheless, the concept is still widely used in evolutionary genetics, e.g. to explain the persistence of deleterious alleles as in the case of spinal muscular atrophy, [5] [4] or, in theoretical models, mutation-selection balance can appear in a variety of ways and has even been applied to beneficial mutations (i.e. balance between selective ...

  4. Genetic variance - Wikipedia

    en.wikipedia.org/wiki/Genetic_variance

    Genetic variance has three major components: the additive genetic variance, dominance variance, and epistatic variance. [3] Additive genetic variance involves the inheritance of a particular allele from your parent and this allele's independent effect on the specific phenotype, which will cause the phenotype deviation from the mean phenotype.

  5. Genetic variability - Wikipedia

    en.wikipedia.org/wiki/Genetic_variability

    Genetic variability is either the presence of, or the generation of, genetic differences. It is defined as "the formation of individuals differing in genotype , or the presence of genotypically different individuals, in contrast to environmentally induced differences which, as a rule, cause only temporary, nonheritable changes of the phenotype ."

  6. Lek paradox - Wikipedia

    en.wikipedia.org/wiki/Lek_paradox

    The lek paradox is a conundrum in evolutionary biology that addresses the persistence of genetic variation in male traits within lek mating systems, despite strong sexual selection through female choice. This paradox arises from the expectation that consistent female preference for particular male traits should erode genetic diversity ...

  7. Genetic variation - Wikipedia

    en.wikipedia.org/wiki/Genetic_variation

    Genetic variation can be identified at many levels. Identifying genetic variation is possible from observations of phenotypic variation in either quantitative traits (traits that vary continuously and are coded for by many genes, e.g., leg length in dogs) or discrete traits (traits that fall into discrete categories and are coded for by one or a few genes, e.g., white, pink, or red petal color ...

  8. Population genetics - Wikipedia

    en.wikipedia.org/wiki/Population_genetics

    Genetic drift is a change in allele frequencies caused by random sampling. [40] That is, the alleles in the offspring are a random sample of those in the parents. [41] Genetic drift may cause gene variants to disappear completely, and thereby reduce genetic variability.

  9. Genetic viability - Wikipedia

    en.wikipedia.org/wiki/Genetic_viability

    Genetic viability is the ability of the genes present to allow a cell, organism or population to survive and reproduce. [1] [2] The term is generally used to mean the chance or ability of a population to avoid the problems of inbreeding. [1] Less commonly genetic viability can also be used in respect to a single cell or on an individual level. [1]