Search results
Results from the WOW.Com Content Network
An unmounted resistive foil strain gauge. A strain gauge takes advantage of the physical property of electrical conductance and its dependence on the conductor's geometry. . When an electrical conductor is stretched within the limits of its elasticity such that it does not break or permanently deform, it will become narrower and longer, which increases its electrical resistance end-to-
The strain gauge, invented by Edward E. Simmons and Arthur C. Ruge in 1938, is a type of resistor that changes value with applied strain. A single resistor may be used, or a pair (half bridge), or four resistors connected in a Wheatstone bridge configuration.
A strain gauge sensor measures the deformation of the elastic element, and the output of the sensor is converted by an electronic circuit to a signal that represents the load. Capacitive strain gauges measure the deformation of the elastic material using the change in capacitance of two plates as the plates move closer to each other.
Though the Simmons was the first to invent the resistance wire strain gauge, both men are credited with the discovery and share the original patent. The trade name of the device, SR-4, which stands for “Simmons Ruge – 4 people,” acknowledges both men and indicates that four people (Simmons, Ruge and their respective assistants) were ...
Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...
Download as PDF; Printable version; In other projects Appearance. move to sidebar hide. From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Strain gauge;
A sensor, which is a type of transducer, is a device that converts a physical property into a corresponding electrical signal (e.g., strain gauge, thermistor). An acquisition system to measure different properties depends on the sensors that are suited to detect those properties.
Biologically inspired tactile sensors often incorporate more than one sensing strategy. For example, they might detect both the distribution of pressures, and the pattern of forces that would come from pressure sensor arrays and strain gauge rosettes, allowing two-point discrimination and force sensing, with human-like ability.