Search results
Results from the WOW.Com Content Network
The dry bulk density of a soil is inversely related to the porosity of the same soil: the more pore space in a soil the lower the value for bulk density. Bulk density of a region in the interior of the Earth is also related to the seismic velocity of waves travelling through it: for P-waves , this has been quantified with Gardner's relation .
Porosity of surface soil typically decreases as particle size increases. This is due to soil aggregate formation in finer textured surface soils when subject to soil biological processes. Aggregation involves particulate adhesion and higher resistance to compaction. Typical bulk density of sandy soil is between 1.5 and 1.7 g/cm 3. This ...
The density of quartz is around 2.65 g/cm 3 but the dry bulk density of a soil can be less than half that value. Most soils have a dry bulk density between 1.0 and 1.6 g/cm 3 but organic soil and some porous clays may have a dry bulk density well below 1 g/cm 3 .
The soil bulk density of cultivated loam is about 1.1 to 1.4 g/cm 3 (for comparison water is 1.0 g/cm 3). [48] Contrary to particle density, soil bulk density is highly variable for a given soil, with a strong causal relationship with soil biological activity and management strategies. [49]
In geology, bulk density is a function of the density of the minerals forming a rock (i.e. matrix) and the fluid enclosed in the pore spaces. This is one of three well logging tools that are commonly used to calculate porosity, the other two being sonic logging and neutron porosity logging
Gardner's relation, or Gardner's equation, named after Gerald H. F. Gardner and L. W. Gardner, is an empirically derived equation that relates seismic P-wave velocity to the bulk density of the lithology in which the wave travels. The equation reads:
Micro CT of porous medium: Pores of the porous medium shown as purple color and impermeable porous matrix shown as green-yellow color. Pore structure is a common term employed to characterize the porosity, pore size, pore size distribution, and pore morphology (such as pore shape, surface roughness, and tortuosity of pore channels) of a porous medium.
Gassmann fluid substitution requires that the porosity remain constant. The assumption being that, all other things being equal, different saturating fluids should not affect the porosity of the rock. This does not take into account diagenetic processes, such as cementation or dissolution, that vary with changing geochemical conditions in the ...