Search results
Results from the WOW.Com Content Network
A continuity equation is the mathematical way to express this kind of statement. For example, the continuity equation for electric charge states that the amount of electric charge in any volume of space can only change by the amount of electric current flowing into or out of that volume through its boundaries.
In physics a conserved current is a current, , that satisfies the continuity equation =.The continuity equation represents a conservation law, hence the name. Indeed, integrating the continuity equation over a volume , large enough to have no net currents through its surface, leads to the conservation law =, where = is the conserved quantity.
In continuum mechanics, the most general form of an exact conservation law is given by a continuity equation. For example, conservation of electric charge q is = where ∇⋅ is the divergence operator, ρ is the density of q (amount per unit volume), j is the flux of q (amount crossing a unit area in unit time), and t is time.
Transport phenomena have wide application. For example, in solid state physics, the motion and interaction of electrons, holes and phonons are studied under "transport phenomena". Another example is in biomedical engineering, where some transport phenomena of interest are thermoregulation, perfusion, and microfluidics.
The law can be formulated mathematically in the fields of fluid mechanics and continuum mechanics, where the conservation of mass is usually expressed using the continuity equation, given in differential form as + =, where is the density (mass per unit volume), is the time, is the divergence, and is the flow velocity field.
This is called the charge density continuity equation + = The term on the left is the rate of change of the charge density ρ at a point. The term on the right is the divergence of the current density J at the same point. The equation equates these two factors, which says that the only way for the charge density at a point to change is for a ...
The definition of probability current and Schrödinger's equation can be used to derive the continuity equation, which has exactly the same forms as those for hydrodynamics and electromagnetism. [6] For some wave function Ψ, let:
The law of continuity is a heuristic principle introduced by Gottfried Leibniz based on earlier work by Nicholas of Cusa and Johannes Kepler. It is the principle that "whatever succeeds for the finite, also succeeds for the infinite". [ 1 ]