Search results
Results from the WOW.Com Content Network
where a represents the number of recursive calls at each level of recursion, b represents by what factor smaller the input is for the next level of recursion (i.e. the number of pieces you divide the problem into), and f(n) represents the work that the function does independently of any recursion (e.g. partitioning, recombining) at each level ...
The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n, until reaching the base case, analogously to the mathematical definition of factorial. Recursion in computer programming is exemplified when a function is defined in terms of simpler, often smaller versions of ...
The μ-recursive functions (or general recursive functions) are partial functions that take finite tuples of natural numbers and return a single natural number. They are the smallest class of partial functions that includes the initial functions and is closed under composition, primitive recursion, and the minimization operator μ .
As one of the examples used to demonstrate such reasoning, Manna's book includes a tail-recursive algorithm equivalent to the nested-recursive 91 function. Many of the papers that report an "automated verification" (or termination proof ) of the 91 function only handle the tail-recursive version.
Mathematically, a set of mutually recursive functions are primitive recursive, which can be proven by course-of-values recursion, building a single function F that lists the values of the individual recursive function in order: = (), (), (), (), …, and rewriting the mutual recursion as a primitive recursion.
A total recursive function is a partial recursive function that is defined for every input. Every primitive recursive function is total recursive, but not all total recursive functions are primitive recursive. The Ackermann function A(m,n) is a well-known example of a total recursive function (in fact, provable total), that is not primitive ...
In computer science, corecursion is a type of operation that is dual to recursion.Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case.
Recursive function may refer to: Recursive function (programming), a function which references itself; General recursive function, a computable partial function from natural numbers to natural numbers Primitive recursive function, a function which can be computed with loops of bounded length; Another name for computable function