Search results
Results from the WOW.Com Content Network
The datasets are classified, based on the licenses, as Open data and Non-Open data. The datasets from various governmental-bodies are presented in List of open government data sites. The datasets are ported on open data portals. They are made available for searching, depositing and accessing through interfaces like Open API. The datasets are ...
The dataset is labeled with semantic labels for 32 semantic classes. over 700 images Images Object recognition and classification 2008 [56] [57] [58] Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, Roberto Cipolla RailSem19 RailSem19 is a dataset for understanding scenes for vision systems on railways. The dataset is labeled semanticly and ...
The LabelMe project provides a set of tools for using the LabelMe dataset from Matlab. Since research is often done in Matlab, this allows the integration of the dataset with existing tools in computer vision. The entire dataset can be downloaded and used offline, or the toolbox allows dynamic downloading of content on demand.
The Caltech 101 data set was used to train and test several computer vision recognition and classification algorithms. The first paper to use Caltech 101 was an incremental Bayesian approach to one-shot learning, [ 4 ] an attempt to classify an object using only a few examples, by building on prior knowledge of other classes.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
The iris data set is widely used as a beginner's dataset for machine learning purposes. The dataset is included in R base and Python in the machine learning library scikit-learn, so that users can access it without having to find a source for it. Several versions of the dataset have been published. [8]
The Overhead Imagery Research Data Set (OIRDS) is a collection of an open-source, annotated, overhead images that computer vision researchers can use to aid in the development of algorithms. [1] Most computer vision and machine learning algorithms function by training on a large set of example data. [ 2 ]
Previously, NIST released two datasets: Special Database 1 (NIST Test Data I, or SD-1); and Special Database 3 (or SD-2). They were released on two CD-ROMs. They were released on two CD-ROMs. SD-1 was the test set, and it contained digits written by high school students, 58,646 images written by 500 different writers.