Search results
Results from the WOW.Com Content Network
Oxaloacetic acid (also known as oxalacetic acid or OAA) is a crystalline organic compound with the chemical formula HO 2 CC(O)CH 2 CO 2 H. Oxaloacetic acid, in the form of its conjugate base oxaloacetate, is a metabolic intermediate in many processes that occur in animals.
pyruvic acid, pervasive intermediate in metabolism. oxaloacetic acid, a component of the Krebs cycle. [5] alpha-ketoglutaric acid, a 5-carbon ketoacid derived from glutamic acid. Alpha-ketoglutarate participates in cell signaling by functioning as a coenzyme. [6] It is commonly used in transamination reactions.
Oxalic acid is an ingredient in some tooth whitening products. About 25% of produced oxalic acid is used as a mordant in dyeing processes. It is also used in bleaches, especially for pulpwood, cork, straw, cane, feathers, and for rust removal and other cleaning, in baking powder, and as a third reagent in silica analysis instruments.
Tissue transaminase activities can be investigated by incubating a homogenate with various amino/keto acid pairs. Transamination is demonstrated if the corresponding new amino acid and keto acid are formed, as revealed by paper chromatography. Reversibility is demonstrated by using the complementary keto/amino acid pair as starting reactants.
The reaction it catalyzes is: pyruvate + HCO − 3 + ATP → oxaloacetate + ADP + P. It is an important anaplerotic reaction that creates oxaloacetate from pyruvate. PC contains a biotin prosthetic group [1] and is typically localized to the mitochondria in eukaryotes with exceptions to some fungal species such as Aspergillus nidulans which have a cytosolic PC.
Oxaloacetic acid + Glutamate ⇌ α-Ketoglutarate + Aspartate (catalyzed by aspartate aminotransferase) When skeletal muscle is at rest (ADP<ATP), the aspartate is no longer needed for the purine nucleotide cycle and can therefore be used with α-ketoglutarate to produce glutamate and oxaloacetic acid (the above reaction reversed).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Overview of the citric acid cycle. The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle) [1] [2] —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol.