Search results
Results from the WOW.Com Content Network
The concept of association rules was popularized particularly due to the 1993 article of Agrawal et al., [2] which has acquired more than 23,790 citations according to Google Scholar, as of April 2021, and is thus one of the most cited papers in the Data Mining field.
Association rules mining procedure is two-fold: first, it finds all frequent attributes in a data set and, then generates association rules satisfying some predefined criteria, support and confidence, to identify the most important relationships in the frequent itemset. The first step in the process is to count the co-occurrence of attributes ...
In data mining and association rule learning, lift is a measure of the performance of a targeting model (association rule) at predicting or classifying cases as having an enhanced response (with respect to the population as a whole), measured against a random choice targeting model.
Apriori [1] is an algorithm for frequent item set mining and association rule learning over relational databases.It proceeds by identifying the frequent individual items in the database and extending them to larger and larger item sets as long as those item sets appear sufficiently often in the database.
An associative classifier (AC) is a kind of supervised learning model that uses association rules to assign a target value. The term associative classification was coined by Bing Liu et al., [1] in which the authors defined a model made of rules "whose right-hand side are restricted to the classification class attribute".
Multi-Relation Association Rules: Multi-Relation Association Rules (MRAR) is a new class of association rules which in contrast to primitive, simple and even multi-relational association rules (that are usually extracted from multi-relational databases), each rule item consists of one entity but several relations.
Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments:
Rule-based machine learning approaches include learning classifier systems, [4] association rule learning, [5] artificial immune systems, [6] and any other method that relies on a set of rules, each covering contextual knowledge.