Search results
Results from the WOW.Com Content Network
Fluid friction describes the friction between layers of a viscous fluid that are moving relative to each other. [7] [8] Lubricated friction is a case of fluid friction where a lubricant fluid separates two solid surfaces. [9] [10] [11] Skin friction is a component of drag, the force resisting the motion of a fluid across the surface of a body.
In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations. [2]
skin friction drag or viscous drag due to the friction between the fluid and a surface which may be the outside of an object, or inside such as the bore of a pipe The effect of streamlining on the relative proportions of skin friction and form drag is shown for two different body sections: An airfoil, which is a streamlined body, and a cylinder ...
This relative movement generates fluid friction, which is a factor in developing turbulent flow. Counteracting this effect is the viscosity of the fluid, which tends to inhibit turbulence. The Reynolds number quantifies the relative importance of these two types of forces for given flow conditions and is a guide to when turbulent flow will ...
Shear velocity, also called friction velocity, is a form by which a shear stress may be re-written in units of velocity.It is useful as a method in fluid mechanics to compare true velocities, such as the velocity of a flow in a stream, to a velocity that relates shear between layers of flow.
From Wikipedia, the free encyclopedia. Redirect page
where is the fluid density and the fluid velocity. To obtain the equations of motion for incompressible flow, it is assumed that the density, ρ {\displaystyle \rho } , is a constant. Furthermore, occasionally one might consider the unsteady Stokes equations, in which the term ρ ∂ u ∂ t {\displaystyle \rho {\frac {\partial \mathbf {u ...
If a moving fluid meets an object, it exerts a force on the object. Suppose that the fluid is a liquid, and the variables involved – under some conditions – are the: speed u, fluid density ρ, kinematic viscosity ν of the fluid, size of the body, expressed in terms of its wetted area A, and; drag force F d.