enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    Even higher derivatives are sometimes also used: the third derivative of position with respect to time is known as the jerk. See motion graphs and derivatives. A large number of fundamental equations in physics involve first or second time derivatives of quantities. Many other fundamental quantities in science are time derivatives of one another:

  3. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The last expression is the second derivative of position (x) with respect to time. On the graph of a function, the second derivative corresponds to the curvature or concavity of the graph. The graph of a function with a positive second derivative is upwardly concave, while the graph of a function with a negative second derivative curves in the ...

  4. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  5. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Further time derivatives have also been named, as snap or jounce (fourth derivative), crackle (fifth derivative), and pop (sixth derivative). [12] [13] The seventh derivative is known as "Bang," as it is a logical continuation to the cycle. The eighth derivative has been referred to as "Boom," and the 9th is known as "Crash."

  6. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since acceleration differentiates the expression involving position, it can be rewritten as a second derivative with respect to time: a = d 2 s d t 2 . {\displaystyle a={\frac {d^{2}s}{dt^{2}}}.} Since, for the purposes of mechanics such as this, integration is the opposite of differentiation, it is also possible to express position as a ...

  7. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    To state this formally, in general an equation of motion M is a function of the position r of the object, its velocity (the first time derivative of r, v = ⁠ dr / dt ⁠), and its acceleration (the second derivative of r, a = ⁠ d 2 r / dt 2 ⁠), and time t.

  8. Physical theories modified by general relativity - Wikipedia

    en.wikipedia.org/wiki/Physical_theories_modified...

    Since general relativity describes four-dimensional spacetime, this represents four equations, with each one describing the second derivative of a coordinate with respect to proper time. In the case of flat space in Cartesian coordinates, we have Γ b c a = 0 {\displaystyle \Gamma _{bc}^{a}=0} , so this equation reduces to the special ...

  9. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    The two dots on top of the x position vectors denote their second derivative with respect to time, or their acceleration vectors. Adding and subtracting these two equations decouples them into two one-body problems, which can be solved independently. Adding equations (1) and results in an equation describing the center of mass motion.